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831Genomic heterosis prediction in beef�cattle

INTRODUCTION

George H.� Shull (1914, 1948) coined the term 
�heterosis� (Syn. hybrid vigour) to describe a phe-
nomenon where crossbred organisms have increased 
growth, productivity, fertility, and vigour over their 
purebred parents. Heterosis has immense economic 
value in plant and animal agriculture and has been 
exploited in many production systems (Lippman and 
Zamir, 2007; Krishnan et�al., 2013). Although, the gen-
etic basis of heterosis is still a subject of investigation, 
the hypotheses are based on the evidence of increased 
heterozygosity in crossbreds relative to straightbreds 
and is maximized in F1 hybrids (Falconer and Mackay, 
1996). Retention of heterosis in crossbreds past the 
F1 generation is predictable based on a dominance 
model and is assumed proportional to heterozygosity 
retained (Dickerson, 1973).

In practice, identi�cation of superior parents 
to be used for crossbreeding and testing the per-
formance of different crosses under �eld conditions 
can be expensive and time consuming. Attempts 
have been made using genomic tools to estimate 
the proportion of phenotypic variation attributable 
to non-additive SNP effects for traits that express 
heterosis (Su et� al., 2012; Bolormaa et� al., 2015). 
Working with poultry, Amuzu-Aweh et� al. (2013) 
predicted heterosis with accuracy up to 50% using 
the genome-wide average squared difference in allele 
frequency (SDAF). Developing a reliable method of 
predicting heterosis for crossbred beef cattle could 
improve the ef�ciency of crossbreeding and improve 
the accuracy of estimated breeding values (EBV) by 
accounting for non- additive genetic effects in the 
genomic evaluation model.

The aim of the present study was to predict gen-
omic heterosis for growth and carcass traits in beef 
cattle using two methods assumed to be linearly pro-
portional to heterosis, to compare methods based 
on prediction accuracy from cross- validation, and 
to test the impact of predicted heterosis on the ac-
curacy of genomic breeding values (GBV).

MATERIALS AND METHODS

All management and procedures involving live 
animals, where applicable, conformed to the guide-
lines outlined by the Canadian Council on Animal 
Care (1993); otherwise, existing data sets from the 
various Canadian research herds were�used.

Animals, Phenotypes, and Genotypes

A total of 6,796 straightbred, multibreed com-
posite and crossbred beef cattle with phenotypes 

and 50K genotypes were used for this study. Data 
were collated from various projects and research 
herds across Canada, including 3,692 from the 
Phenomic Gap Project based at Lacombe Research 
Centre, Lacombe, AB; 2,350 from the University 
of Alberta�s Roy Berg Kinsella Research Ranch, 
Kinsella, AB; and 754 from the University of 
Guelph�s Elora Beef Cattle Research Station, Elora, 
ON. The population structure, breeds, and animal 
management were previously described in detail by 
Lu et�al. (2016). Brie�y, the whole data set consisted 
of 968 Angus, 572 Charolais, 316 Hereford, 17 
Simmental, 17 Limousine, 1,225 Angus-Hereford 
crossbred, 484 Angus-Simmental crossbred, 353 
Charolais-Red Angus crossbred, 1,178 Kinsella 
composite, 1,105 Beefbooster TX composite, and 
561 animals of other breed combinations. Kinsella 
composite is a beef�dairy hybrid heavily in�uenced 
by Hereford and Angus breeds with infusion of 
Holstein (Wang et�al., 2006). Beefbooster TX com-
posite is predominantly Charolais based with in-
fusion of Holstein, Maine Anjou, and Chianina 
(http://www.beefbooster.com).

Phenotypic records were birth weight (BWT), 
actual weaning weight (WWT), 205-d weaning 
weight (W205D), pre-weaning daily gain (PDG), 
average daily gain on feedlot (ADG), yearling 
weight (YWT), hot carcass weight (HCW), back 
fat thickness (BFT), rib eye area (REA), marbling 
score (MBS), lean meat yield (LMY), and calcu-
lated yield grade (CYG). Yield grade was calcu-
lated according to USDA speci�cation (Holland 
and Loveday, 2013). The data was edited to re-
move records > or <3 SD from the mean after 
correcting for systematic effects of  sex, age of 
dam, herd, and year of  birth. Pedigree extending 
to purebred ancestors was known, assumed ac-
curate, and available for all animals used in the 
study. The pedigree records consisted of  11,905 
individuals including 873 sires and 4,483 dams 
over �ve generations.

Marker genotypes were obtained using 
BovineSNP50 BeadChip (50K; Illumina, San Diego, 
California, USA) from Delta Genomics, Edmonton, 
Alberta, Canada. Quality control was performed to 
remove SNPs with minor allele frequency < 0.01 and 
call rate < 0.90 (Lu et�al., 2016). Missing genotypes 
were imputed using FImpute v2.0 (Sargolzaei et�al., 
2014). In addition, two animals with call rate less 
than 90% were also removed, and only autosomal 
SNPs with known genome position according to the 
UMD_3.1 bovine assembly map (Zimin et�al., 2009) 
were used. After editing, 42,610 SNPs and 6,794 ani-
mals were used for this study.
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Prediction of Genomic Breed Fractions

Genomic breed fractions were predicted for all 
individuals (n� =� 6,794) using the ADMIXTURE 
software (Alexander et�al., 2009). A�10-fold cross- 
validation procedure available in ADMIXTURE 
was performed to �nd the best possible K value 
with the lowest cross-validation error (Alexander 
et�al., 2009). The resulting breed fractions at K�=�6 
were selected from the ADMIXTURE analysis and 
aligned with the known sire breed information to 
identify the various breed ancestries existing in the 
dataset. Six breed ancestors were uniquely identi-
�ed and de�ned as Angus, Hereford, Charolais, 
Crosses, Kinsella Composite, and Beefbooster 
TX Composite. The Crosses represented two or 
more way crossbreds involving Angus, Hereford, 
Charolais, Simmental, Gelbvieh, Limousin, and 
Piedmontese. The genomic breed fraction was used 
to designate animals as purebred Angus, Hereford, 
or Charolais based on having greater than 80% of 
the represented major breeds, while another set of 
animals were grouped as Angus-based, Hereford-
based, and Charolais-based crossbreds based on 
having 50%�80% of the leading breed fraction. 
Also, the breed fractions were �tted as covariates in 
the various statistical models de�ned below to cor-
rect for population strati�cation and breed effects.

Model De�nitions and Statistical Analysis

As a �rst step, assuming heterosis is due to dom-
inance and overdominance, variance component 
analyses were carried out to estimate the contribu-
tion of additive and non-additive genetic effects to 
the total phenotypic variation of the studied traits 
using four linear mixed effect models and all data-
set (n�=�6,794). Each model differed based on the 
source of relationship matrix used in the analysis.

 y Xb Z a e1� � � �1µ  (1)

 y 1 Xb Z a Z w e1 2� � � �µ �  (2)

 y 1 Xb Z g e3� � � �µ  (3)

 y 1 Xb Z g Z d e3 4� � � � �µ  (4)

where y is a vector of phenotypic observations; �  is 
the population mean and 1 is a vector of ones; de-
pending on the trait analyzed, X is the design matrix 
that relates the �xed effects to the observation while 
b is an unknown vector of �xed effects (contem-
porary groups formed based on herd, year, sex, 
and management groups; data source, covariates 

of dam age, weaning age, start age for feedlot test, 
slaughter age, and breed fractions); a and g are 
vectors of random additive genetic effects; w and 
d are vectors of random dominance effects; e is a 
vector of random residual effects; Z1, Z2, Z3, and Z4 
are incidence matrices that relate effects to pheno-
types; a, w, g, d, and e are normally distributed as: 
a ~ N(0,� 2

aA), w ~ N(0,� 2
wW), g ~ N(0,� 2

gG), d ~ 
N(0,� 2

dD) and e ~ N(0,� 2
eI), respectively.

The matrix A is the numerator relationship con-
structed from pedigree, I is an identity matrix, and 
W is the dominance relationship based on pedigree 
which was extracted from a gametic relationship 
matrix constructed by the method described by 
Schaeffer et�al. (1989). The gametic relationship is 
de�ned as the matrix of probabilities that two alleles 
are identical by descent and has the order 2n for 
n individuals assuming two alleles at a locus (e.g., 
individual A�has alleles A1 and A2). Therefore, W 
between two animals, A�and B, in the absence of 
inbreeding was derived from a gametic relationship 
matrix as ([A1, B1]*[A2, B2]�+�[A1, B2]*[A2, B1]), 
where A1 and A2 are the alleles of individual A, 
and B1 and B2 are the alleles of individual B.�The 
genomic additive relationship matrix G was con-
structed from genotype information according to 
the method described in detail by VanRaden (2008) 
as follows: G�=�ZZ�/ 2��  (pj) (1�pj). The matrix Z 
is of the order n × m (i.e., the number of individu-
als by the number of SNPs). The elements in Z are 
equal to �2pj, 1�2pj, and 2�2pj for genotypes AA, 
AB, and BB, while pj is the allele frequency of the 
B allele at the jth SNP. The genomic dominance re-
lationship matrix D was constructed from genotype 
information following the method described by 
Vitezica et�al. (2013) as follows: D�=�HH�/2� (pjqj). 
Depending on the genotype at jth SNP, the ele-
ments of H matrix were �2qj

2, 2pjqj, and �2pj
2 for 

AA, AB, and BB genotypes, while pj and qj are the 
allele frequencies.

In constructing G and D for these multibreed 
and crossbred dataset, breed-speci�c allele frequen-
cies were not applied because IbÆn� z-Escriche et�al. 
(2009) noted that models that �t breed-speci�c 
SNP allele effects for crossbred population may not 
be necessary if  high density markers are utilized 
to trace ancestor alleles with precision. More so, 
across-breed genomic predictions were performed 
successfully in previous studies using samples of 
the current dataset without assuming breed-spe-
ci�c allele frequencies for the G matrix (Lu et�al., 
2016; Akanno et�al., 2017). In addition, phenotypes 
will be adjusted for breed effects using the pre-
dicted genomic breed fractions, which accounts for 
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Table�3 shows the proportions of total phenotypic 
variance explained by all genetic effects for growth 
and carcass traits in beef cattle derived from four 
models that utilized a pedigree-based or genome-
based relationship. Random maternal genetic and 
maternal permanent environmental effects were 
included in all models for evaluating pre-wean-
ing traits (e.g., BWT, WWT, W205D, and PDG). 
This was achieved by using pedigree relationship to 
account for maternal effects in both pedigree-based 
and genome-based models because dams with more 
than one progeny in the dataset frequently were not 
genotyped.

Narrow-sense heritability estimates from mod-
els 1 and 2 that used a pedigree relationship were 
similar for each trait evaluated (Table�3). Similarly, 
heritability estimates from models 3 and 4 that uti-
lized a genomic relationship were also similar for 
each of the studied traits. This similarity in herit-
ability estimates between models utilizing the same 
type of relationship matrix has been previously 
observed in a study with pigs (Lopes et�al., 2015). 
However, estimates of heritability from a genome-
based model were generally lower than the esti-
mates from pedigree-based models (Table�3). This 
reduction in heritability estimates from a genome-
based model as opposed to a pedigree-based model 
has also been observed before (Lopes et�al., 2015; 
Akanno et� al., 2017) and has been referred to as 
missing heritability (Lee et� al., 2011). This is be-
cause the heritability from the genome-based model 
includes only the contribution of causal variants in 
linkage disequilibrium with the SNP markers and 
not the contribution of all causal variants as in the 
pedigree-based�model.

The estimates of heritability for growth traits 
in our population using all four models were mod-
erate to highly heritable ranging from 0.30 to 0.64 
(Table� 3), which is slightly greater than values of 
0.22 to 0.55 previously reported for growth traits in 
North American beef cattle populations (Schenkel 
et� al., 2004; Schiermiester et� al., 2015). On the 
other hand, heritability estimates for carcass traits 
across all models ranged from 0.26 to 0.45, which 
agrees with the range of values reported by Miar 
et�al. (2014) for a Canadian dataset (0.22 to 0.38) 
and those reported (0.15 to 0.97) in a review by 
Rios Utrera and Van Vleck (2004) for beef cattle 
in general. Heritability estimates from the current 
study are based on multiple breeds and crossbred 
dataset, which is likely to be greater compared with 
estimates from a single breed as in previous studies.

Accounting for dominance effects in both pedi-
gree- and genome-based models for across breed 

genetic evaluation of growth traits (BWT, WWT, 
W205D, PDG and YWT) improved the predict-
ability of the models based on likelihood ratio test 
(P�< 0.01) but not for carcass traits. The estimates 
of the proportion of phenotypic variance explained 
by dominance deviation from a pedigree-based 
model were generally large with large standard 
errors (SE) and ranged from 0 to 0.29 for growth 
traits and 0 to 0.15 for carcass traits, while estimates 
from a genome-based model ranged from 0.02 to 
0.09 for growth traits and 0 to 0.06 for carcass traits 
(Table�3). The large proportion of dominance vari-
ance from a pedigree-based model may indicate po-
tential confounding of dominance deviation with 
other genetic and non-genetic factors like maternal 
and maternal permanent environmental effects es-
pecially for those traits where maternal effects are 
important.

Here, maternal heritability estimates observed 
for pre-weaning traits were zero or near zero across 
all models evaluated, while estimates of maternal 
permanent environmental effects ranged from 0.02 
for BWT to 0.23 for PDG, on average (Table� 3). 
The correlation between direct and maternal gen-
etic effects were large and negative ranging from 
�0.44 (WWT) to �0.66 (BWT). Several studies 
have shown that estimates of maternal effects on 
pre-weaning traits largely depends on data struc-
ture and a negative correlation between direct and 
maternal genetic effects can be in�uenced by data 
structure, actual genetic antagonism, or due to sire 
by year interaction (Meyer, 1992; Konstantinov 
and Brien, 2003; Maniatis and Pollott, 2003). As 
there were 1,492 dams out of 4,483 with two or 
more progeny and only a �ve generation pedigree, 
the current data structure may not allow for proper 
estimation of maternal genetic and permanent en-
vironmental effects for growth traits when using 
pedigree relationship. Thus, the contribution of 
dominance deviation to phenotypic variation may 
be in�ated and may be the reason for the large SE 
reported for dominance ratio from pedigree-based 
models.

However, the fact that dominance was iden-
ti�ed for growth traits using pedigree-based 
models corroborates results from genome-based 
models and indicates that dominance is important 
for growth traits in beef cattle. The rather low esti-
mates of dominance ratio from a genome-based 
model may be related to lack of power for estimat-
ing these effects when using SNP panel of limited 
density. Increasing the density of markers used 
for computing the dominance relationship among 
animals may lead to more accurate estimation of 
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the current study; however, there is similarity in the 
trends when comparing association in British and 
Continental cattle breeds.

Predicted Genomic Heterosis

Predicted genomic heterosis for growth and 
carcass traits in different crosses of beef cattle 

validation groups are shown in Figures 3 and 4. 
In general, heterosis predicted by HET1 method 
resulted in less variable estimates than HET2. 
However, heterosis predictions from HET1 method 
were mostly within the range of estimates generated 
by HET2. Further, heterosis predicted by HET1 
methods were mostly positive for growth traits 
(Figure�3) but were largely negative for most of the 

Figure�3. Individual genomic heterosis for growth traits predicted in the crossbred validation group of beef cattle using two prediction methods 
(Red�=�heterosis predicted as retained heterozygosity (HET1), Black�=�heterosis predicted as deviation of adjusted crossbred phenotype from MPV 
(HET2)). ANB�=�Angus-based crosses (50%�80% Angus proportion in crossbreds), HEB�=�Hereford-based crosses (50%�80% Hereford propor-
tion in crossbreds), CHB�=�Charolais-based crosses (50%�80% Charolais proportion in crossbreds), CR�=�Two or more way crosses involving 
Angus, Hereford, Charolais, Gelbvieh, Simmental, Limousin, and Piedmontese, KC�=�Kinsella composite, and BB�=�Beefbooster TX composite 
(www.beefbooster.com).

Table�5. Effects of RHa and representative breed effectsb as deviations from Kinsella composite for the 
studied traits

Traits RH AN HE CH CR BB
Birth weight, kg 0.55�–�0.79 3.34�–�1.39* 5.76�–�1.67*** 13.58�–�1.68*** 4.40�–�2.03* 12.65�–�1.95***
Actual weaning weight, kg 0.82�–�3.47 8.62�–�6.53 8.40�–�7.74 25.75�–�7.58*** 30.19�–�8.71*** 25.75�–�8.49**
205-d Weaning weight, kg 4.26�–�4.02 �4.74�–�7.24 �4.04�–�8.65 13.46�–�8.67 18.83�–�10.61 18.77�–�10.00
Pre-weaning daily gain, kg/d 0.02�–�0.02 �0.01�–�0.03 �0.02�–�0.04 0.06�–�0.04 0.10�–�0.05* 0.07�–�0.05
Average daily gain, kg/d �0.08�–�0.03* 0.19�–�0.06*** 0.150.07* 0.19�–�0.07** 0.12�–�0.07 0.15�–�0.08
Yearling weight, kg �2.89�–�4.88 17.60�–�8.78* �1.42�–�10.42 26.03�–�10.23* 39.77�–�12.10** 54.81�–�11.60***
Hot carcass weight, kg �21.70�–�4.99*** 34.25�–�8.03*** 19.91�–�9.80* 47.26�–�8.87*** 49.86�–�10.51*** 52.60�–�10.26***
Back fat thickness, mm 0.09�–�0.62 1.03�–�0.97 0.35�–�1.18 �5.95�–�1.06*** �5.54�–�1.29*** �4.21�–�1.23***
Rib eye area, cm2 �1.62�–�1.63 �0.73�–�2.62 �5.32�–�3.19 17.06�–�2.89*** 16.01�–�3.42*** 15.18�–�3.35***
Marbling score �28.82�–�12.26* 5.04�–�19.54 �52.32�–�23.81* �101.5�–�21.43*** �46.55�–�25.62 �75.26�–�25.06**
Lean meat yield, % 0.18�–�0.61 �2.20�–�0.97* �1.99�–�1.19 6.60�–�1.08*** 5.92�–�1.28*** 4.73�–�1.25***
Calculated yield grade �0.07�–�0.11 0.47�–�0.18** 0.47�–�0.22* �1.09�–�0.20*** �1.00�–�0.23*** �0.78�–�0.23***

1RH was �tted as �xed covariates in model 3 to estimate effects.
bEstimated in model 3 using all data (n�=�6,794); AN�=�Angus, HE�=�Hereford, CH�=�Charolais, CR�=�two and more way crosses, BB�=�Beefbooster 

TX composite (www.beefbooster.com).
*P�<�0.05; **P�<�0.01; ***P�<�0.001.
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