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Abstract
Imputation may be used to rescue genomic data from animals that would otherwise be eliminated due to a lower than desired 
call rate. The aim of this study was to compare the accuracy of genotype imputation for Afrikaner, Brahman, and Brangus cat-
tle of South Africa using within- and multiple-breed reference populations. A total of 373, 309, and 101 Afrikaner, Brahman, 
and Brangus cattle, respectively, were genotyped using the GeneSeek Genomic Profiler 150 K panel that contained 141,746 
markers. Markers with MAF ≤ 0.02 and call rates ≤ 0.95 or that deviated from Hardy Weinberg Equilibrium frequency with 
a probability of ≤ 0.0001 were excluded from the data as were animals with a call rate ≤ 0.90. The remaining data included 
99,086 SNPs and 360 Afrikaner, 75,291 SNPs and 288 animals Brahman, and 97,897 SNPs and 99 Brangus animals. A total 
of 7986, 7002, and 7000 SNP from 50 Afrikaner and Brahman and 30 Brangus cattle, respectively, were masked and then 
imputed using BEAGLE v3 and FImpute v2. The within-breed imputation yielded accuracies ranging from 89.9 to 96.6% 
for the three breeds. The multiple-breed imputation yielded corresponding accuracies from 69.21 to 88.35%. The results 
showed that population homogeneity and numerical representation for within and across breed strategies, respectively, are 
crucial components for improving imputation accuracies.
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Introduction

Genomic selection (GS) and genome-wide association stud-
ies (GWAS) require the use of large numbers of animals 
(at least ≥ 1000) that have been genotyped at a very large 
number of loci (Calus et al., 2013; Lashmar et al., 2019). 
Although the cost of high-density panels and genotype-by-
sequencing has decreased in recent years with the prospect 
of decreasing further in the future, per animal cost of geno-
typing on high-density panels remains high (Lashmar et al., 
2019; Gebrehiwot et al., 2021). The high cost of genotyp-
ing on high-density panels hinders genetic progress in most 
breeding programs, particularly in developing countries. 

However, imputation may be used to increase the density 
of genotypes for animals that have been assessed with low-
density panels (Friedrich et al., 2018). Genotype imputation 
is used to infer missing genotypes of animals assayed with 
low-density panels from those in a reference population that 
was genotyped using a high-density panel (Marchini et al., 
2007; Li et al., 2009).

In developing countries, having a genotyped reference 
population of adequate size can be problematic, and this 
is particularly true for indigenous breeds. An alternative to 
increasing the number of animals in the reference popula-
tion of the target breed is to combine data sets from related 
populations (Lund et al., 2014). Rowan et al. (2019) found 
that a large multi-breed reference population significantly 
increased imputation accuracy compared with a within-
breed reference panel. However, Korkuć et al. (2019) argue 
that when imputing a small population and a large refer-
ence panel is not available and that a smaller reference panel 
should be used without including a different related breed.

Various approaches exist for imputing genotypes (Boi-
son et al., 2015). Currently, it is difficult to generate high-
density genotypes or whole genome sequence data for many 
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individuals due to the high cost of genotyping. Fortunately, 
pedigree information for the majority of individuals may 
be readily available. The use of pedigree data can be espe-
cially valuable in identifying rare genetic variants (Cohen 
et al., 2004; Leigh et al., 2008; Manolio et al., 2008; Manolio 
et al., 2009; Cirulli and Goldstein, 2010; Ott et al., 2011; 
Cheung et al., 2013). However, in some breeding programs, 
incomplete or nonexistent pedigree data hinders its use in 
imputation.

The genetic architecture and molecular mechanisms 
underlying the adaptation of the South African indigenous 
breeds (e.g., Afrikaner) have not been thoroughly investi-
gated (Lashmar et al., 2019). The same can be said for Bos 
indicus- (e.g., Brahman) and Bos indicus-derived (Bran-
gus) cattle in South Africa. Despite cost challenges, there 
have been efforts towards accumulating a relatively modest 
number of high-density genotypes for these breeds in South 
Africa through the South African Beef Genomics Program. 
To date, except for Bonsmara, these efforts have fallen short 
of the data requirements for GS and GWAS. The need for 
reduced cost of genotyping and an increased number of ani-
mals with high-density genotypes provide motivation for 
maximizing the usefulness of the available samples.

A large proportion of SNP assays failing on an individual 
DNA sample may be indicative of a poor-quality DNA sam-
ple, which could lead to aberrant genotype calling. Samples 
with low genotyping efficiency, after first removing markers 
which have a low genotype call rate across samples, should 
be eliminated from further analysis as they might indicate a 
poorer-quality DNA sample (Turner et al., 2011). In devel-
oping countries, this editing of the data further reduces the 
typically already too small number of genotyped animals. 
Genotype assays that failed on many samples are poor assays 
and are likely to result in spurious data and it is recom-
mended that these markers also be removed from the analy-
sis (Turner et al., 2011). This editing can compromise the 
distance between markers, thus further compromising the 
analysis. Therefore, the aim of this study was to evaluate 
the use of imputation to rescue missing genotypes for the 
Afrikaner, Brahman, and Brangus breeds using within-breed 
reference populations and alternatively a multi-breed refer-
ence population.

Materials and methods

Pedigrees for the Afrikaner, Brahman, and Brangus cattle 
were obtained from the respective breed societies. Influen-
tial animals were identified using PEDIG (Boichard, 2002) 
from the marginal genetic contributions to their respective 
populations. A total of 373, 309, and 101 animals were 
found to represent the Afrikaner, Brahman, and Brangus 
breeds, respectively. These animals were genotyped using 

the GeneSeek Genomic Profiler (GGP or 150 K) consisting 
of 141,746 SNP markers. Sampling and genotyping proce-
dures were approved by the Agricultural Research Council 
of South Africa ethics committee (APIC18/03). Quality con-
trol was uniform for all breeds. Using Plink v1.9 (Chang 
et al., 2015), MAF, call rates for markers and animals, and 
genotype frequency were determined for each breed. Mark-
ers with MAF ≤ 0.02 and call rates ≤ 0.95 or that deviated 
from Hardy Weinberg Equilibrium frequency with a prob-
ability of ≤ 0.0001 were excluded as were animals with a call 
rate ≤ 0.90. After these edits, 99,086, 97,987, and 75,291 
SNP markers and 360, 288, and 99 animals remained in 
the data for the Afrikaner, Brahman, and Brangus breeds, 
respectively.

For each breed, a random set of animals was selected and 
a random portion of the genotypes of these animals were 
masked. For Afrikaner and Brahman, 7986 and 7002 SNPs 
from 50 randomly selected animals were masked. For Bran-
gus, 60,696 SNPs of the 97,897 SNPs, from 30 randomly 
selected animals were masked.

Within breeds, the masked genotypes were imputed using 
BEAGLE (Browning et al., 2018) and FImpute (Sargolzaei 
et al., 2014). BEAGLE phases and imputes missing geno-
types based on the similarity of haplotypes (Browning and 
Browning, 2009). The program restricts the hidden Markov 
model (HMM) calculations to clusters of markers that are 
genotyped in the study population, which reduces memory 
requirements and computation time (Browning and Brown-
ing, 2016). FImpute uses an overlapping sliding window 
approach to efficiently exploit relationships or haplotype 
similarities between individuals in the study and reference 
population (Sargolzaei et al., 2014). The program starts with 
long windows to capture similarities between close relatives 
followed by short windows to capture information from more 
distant relatives (Sargolzaei et al., 2014). FImpute also uses 
pedigree information if it is available.

A multi-breed reference population that was created by 
pooling genotypes from the three breeds included a total of 
617 animals (Afrikaner = 310, Brahman = 238, and Bran-
gus = 69) animals. This reference population used for multi-
breed genotype imputation contained 60,364 SNPs, after 
combined quality control, that were common to the three 
breeds. To test this reference population, study populations 
in which 7986 SNPs of the 99,086 SNP from 50 randomly 
selected Afrikaner cattle, 7002 SNPs of the 97,987 SNPs 
from 50 randomly selected Brahman cattle and 20,000 SNPs 
of the 75,291 from 30 randomly selected Brangus cattle 
were masked. The genotypes at the masked loci were again 
imputed using both BEAGLE (Browning et al., 2018) and 
FImpute (Sargolzaei et al., 2014).

A multidimensional scaling (MDS) cluster analysis of 
genotyped individuals based on genome-wide identity by 
state (IBS) pairwise distances was conducted using Plink 
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v1.9 (Chang et al., 2015). The accuracy of imputation was 
assessed by the concordance rate (CR) between actual 
markers masked as missing and imputed genotypes using 
SnpSift (Cingolani et al., 2012). Lastly, the influence of 
MAF and LD on CR for imputed data (within- and multi-
breeds) was assessed with simple linear regression and 
plotted.

Results and discussion

Population cluster, minor allele frequency, 
and linkage disequilibrium

The Afrikaner (Bos taurus africanus) and Brahman 
(Bos indicus) breeds of cattle are well adapted to the 
harsh environmental conditions of South Africa and are 
extensively used for domestic beef production. Although 
bred for similar purposes, the Afrikaner and Brahman 

cattle breeds are characterized by different historical 
origins in South Africa. The Afrikaner is a Sanga-type 
breed, combining indicine and African taurine ancestry, 
and is genetically distinct from European Bos taurus breeds 
(Makina et al., 2016). The Brahman is a Bos indicus breed 
originating from backcrossing of Zebu cattle (e.g., Ongole, 
Gir, Guzerat, and Krishna Valley cattle) adapted to the 
subtropical environmental conditions of south Asia with 
European taurine breeds in America (Koufariotis et al., 
2018; Low et al., 2020). Afrikaner cattle are believed to be 
the product of southward migration from Eurasia along the 
west coast of the continent via the horn of Africa (Hanotte 
et  al., 2002). In contrast, the Brahman cattle were first 
imported from America directly into South Africa in the 
mid-1950s (http:// south africa. co. za/ brahm an- cattle. html).

Brangus cattle were used in this study together with cattle 
of the Afrikaner and Brahman breeds with the view that this 
breed could potentially increase the accuracy of imputation 
for the other breeds when a multi-breed reference population 
strategy served as a base. Brangus was developed to combine 
the superior traits of Angus and Brahman cattle. Thus, they 
are a stabilized composite breed with 3/8 Brahman and 5/8 
Angus genetics (http:// www. thebe efsite. com/ breeds/ beef/ 
43/ brang us/). Like Brahman, the initial development of 
Brangus was in the United States of America (USA) at a 
United States Department of Agriculture research station 
at Jeanerette, Louisiana (USDA Yearbook of Agriculture, 
1935).

The separation of the Afrikaner, Brahman, and Brangus 
breeds was apparent as shown by MDS clustering (Fig. 1). 
The Afrikaner and Brangus had similar values for the first 
MDS coordinate while Brahman was substantially distant 
from the other breeds. Afrikaner and Brahman had simi-
lar values on the second MDS coordinate, with Brangus 
being distant. To some degree, the development of these 
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Fig. 1  Multidimensional scale (MDS) clustering illustration of the 
genetic distinctiveness of the Afrikaner, Brahman, and Brangus cattle 
breeds

Fig. 2  Average minor allele fre-
quency (MAF) across 29 auto-
somes for the Afrikaner (AFR), 
Brahman (BRA) and Brangus 
(BRNG) breeds of cattle
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three breeds constitutes varying combinations of indicine 
and taurine genetics. It might be speculated that the sepa-
ration of Brahman from Afrikaner and Brangus along the 
X-axis would be attributable to differences in the propor-
tion of indicine genetics. Likewise, it could be speculated 
that the separation of Brangus from Afrikaner and Brahman 

along the Y-axis might reflect differences in heterozygosity. 
The size and compactness of the MDS clusters of animals 
might be interpreted as indicating the degree of within-breed 
genetic homogeneity, with the Brahman evidently being the 
most homogenous of the three breeds.

Fig. 3  Average linkage disequi-
librium (r2) for each pair of 
SNP alleles within a window of 
10 000 kb estimated for marker 
spacing from of 1 to 2 000 kb
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Fig. 4  Concordance rate (%) 
used to measure within breed 
genotype imputation accuracies 
for Afrikaner (AFR), Brahman 
(BRA) and Brangus (BRNG) 
utilizing a. BEAGLE & b. 
FImpute
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The average MAF for Afrikaner, Brahman, and Bran-
gus was 0.23, 0.22, and 0.30, respectively (Fig. 2). Minor 
allele frequency ranged from 0.20 to 0.31 for majority of 
the chromosomes implying that the effect of low MAF on 
the overall LD estimates for each breed should be negligi-
ble as previously suggested by Sargolzaei et al. (2008). The 
number of markers with low MAF (< 0.10) were 20,319, 
10,075, and 3077 for Afrikaner, Brahman, and Brangus, 
respectively. The observation of lower MAF in Afrikaner 
and Brahman may be partly reflective of the SNP panel 
discovery breeds being mainly of European taurine origin. 
Although also displaying a similar percentage of markers 
with low MAF, the Brahman breed may be better character-
ized by the GeneSeek Genomic Profiler than the Afrikaner 
due to the SNP array containing some Bos indicus markers 
and the use of taurine breeds in the initial development of 
Brahman. The high MAF of Brangus and smaller number of 
markers with low MAF may reflect its more recent forma-
tion as an indicine-taurine composite breed in comparison to 
Afrikaner and Brahman. Previous research has shown MAF 
for these breeds as 0.25 for Afrikaner (Makina et al., 2015), 
0.24 for Brangus (He et al., 2018), and 0.27 for Brahman 
(Farah et al., 2018).

Unlike European breeds (e.g., Bos taurus breeds), 
indigenous and Bos indicus breeds were underrepresented 
in the SNP panel discovery breeds. Thus, in South Africa 
investigations were conducted to test the viability of existing 
SNP assays to study indigenous cattle of South Africa 
(Qwabe et al., 2013; Lashmar et al., 2019). Observations 
from these initial studies showed lower minor allele 
frequencies (MAF) and fewer informative SNPs for the 
indigenous breeds (Qwabe et al., 2013; Zwane et al., 2016; 
Lashmar et al., 2018). Gebrehiwot et al. (2021) concluded 
that a new SNP panel was needed to accommodate crossbred 
African dairy cattle and possibly other indigenous cattle. 
Although still in its infancy, genomic research has yielded 
promising results in identifying genes associated with 
production, adaptation, and reproduction in different breeds 
of South African cattle (Wang et al., 2015; Makina et al., 
2016; Zwane et al., 2019).

Although the observed MAF for the three breeds is 
expected to have minor effects on LD, they may have 
considerable effects on imputation accuracies. Some 
imputation programs have been found to perform poorly for 
low MAF SNP (Shi et al., 2019). Shi et al. (2019) explained 
the poor performance of some programs as being due to 

Fig. 5  Linear regression dis-
playing the relationship between 
MAF and CR within breed data 
imputed with a. BEAGLE & b. 
FImpute
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reference population bias. Thus, the importance of the 
composition of reference population coupled with the use 
of a suitable imputation program is emphasized to achieve 
relatively high accuracy imputation. In the current study, 
it was hypothesized that MAF effects may be expected 
for a breed that is not numerically well represented in the 
reference population (e.g., Brangus) or a breed that is less 
genetically diverse (e.g., Brahman).

The squared correlation between SNP alleles at different 
loci indicated greater initial LD in Brangus than in Afrikaner 
and Brahman with observed LD at a marker spacing of 1 kb 
being greater in Brangus (0.62) than in Afrikaner (0.51) and 
Brahman (0.50) (Fig. 3). However, a sharp decline in LD was 
noted in Brangus and average LD was 0.23, 0.20, and 0.21 
for the Afrikaner, Brahman, and Brangus, respectively. Zhu 
et al. (2013) and Rogers (2014) indicated that populations 
formed recently, i.e., through crossbreeding programs, are 
typically characterized by a steep decline in initial LD; and 
this is in agreement with the current result for the Brangus 
breed. Linkage disequilibrium for Brahman in this study was 
slightly greater at marker spacing of 10 kb, than estimates 
of 0.25 for Australian Brahman (Porto-Neto et al., 2014) 
and 0.21 for Brazilian Gyr (Silva et al., 2010). However, the 

present estimates of LD for Brahman (0.33–0.36 at an inter-
val of 10 kb) are similar to those of other indicine breeds 
such as Nellore (McKay et al., 2007).

Within‑breed genotype imputation

Figure 4 presents the concordance rate, defined as the per-
centage of correctly imputed genotypes over all study indi-
viduals. Using BEAGLE, imputation of Brahman genotypes 
had an average concordance rate of 96.6% while the aver-
age accuracies for Afrikaner and Brangus were 91.4% and 
89.9%, respectively (Fig. 4a). Using FImpute, imputation 
of Brahman genotypes was 96.0% accurate while the con-
cordance rates for Afrikaner and Brangus were 92.8% and 
95.3%, respectively (Fig. 4b). Thus, using pedigree infor-
mation in addition to LD (i.e., using FImpute) resulted in 
at least as accurate imputation as did using LD informa-
tion only (i.e., using BEAGLE). However, the differences 
between approaches in accuracy of imputation were gener-
ally negligible. Nelson et al. (2016) and Bai et al. (2019) 
stated that a genetically diverse study population requires a 
corresponding diverse reference population. For Brahman, 
the least diverse of these three breeds as presented in Fig. 1, 

Fig. 6  Linear regression dis-
playing the relationship between 
Linkage disequilibrium and 
concordance rate for within 
breed data imputed with a. 
BEAGLE & b. FImpute
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genotype imputation accuracies were numerically greater for 
both BEAGLE and FImpute than for the more genetically 
diverse Afrikaner and Brangus. Thus, within-breed imputa-
tion appeared slightly more accurate when the breed was less 
genetically diverse and consequently making the animals for 
whom genotypes were to be imputed more closely related 
to the reference population (Huang et al., 2012; Bouwman 
et al., 2014).

The coefficient of determination from the simple lin-
ear regression (R2) of the accuracy of imputation on MAF 
ranged from 0.001 to 0.014 illustrating the negligible influ-
ence of MAF on the concordance rate for within breed 
imputation, when using BEAGLE (Fig. 5a). However, when 
FImpute was used for imputation, differences in MAF had 
a much larger effect on the concordance rate (R2 = 0.626 to 
0.983) (Fig. 5b). Thus, MAF had an important influence 
on the accuracy of imputation when pedigree relationships 
were used in the prediction of missing genotypes. However, 
whether BEAGLE or FImpute was used for imputation, the 
influence of LD at 10 kb marker spacing on the accuracy 
of imputation was small as indicated by low coefficients 

of determination (R2 = 0.017 to 0.090 and R2 = 0.002 to 
0.030, respectively) (Fig. 6a, b). These findings on family-
based imputation methods agreed with findings by Liu et al. 
(2019). Chassier et al. (2018) found that LD and MAF had 
no major influence on the imputation accuracies. Also, these 
findings were consistent with Shi et al. (2019) in that the 
effect of MAF on CR depended on the choice of software 
used for imputation.

Imputation using a multi‑breed reference 
population

When using BEAGLE for imputation with a multi-breed 
reference population composed of Afrikaner, Brahman, 
and Brangus, the concordance rates were 82.6%, 79.4%, 
and 69.2%, respectively (Fig. 7a). When using FImpute to 
impute with the multi-breed reference population, Afri-
kaner, Brahman, and Brangus had concordance rates of 
88.4%, 81.7%, and 72.3%, respectively (Fig. 7b). Thus, 
the accuracy of imputation was reduced by more than 
10% with the use of a multi-breed reference population. 

Fig. 7  Concordance rate (%) 
used to measure across breed 
genotype imputation accuracies 
for Afrikaner (AFR), Brahman 
(BRA), and Brangus (BRNG) 
utilizing a multibreed reference 
population using a. BEAGLE & 
b. FImpute
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Breed representation in the reference population appeared 
to affect the observed outcomes of imputation using the 
multi-breed reference population. The Afrikaner had the 
highest representation (n = 310) in the reference popula-
tion followed by Brahman (n = 238) and Brangus (n = 69). 
Of particular interest was the observation that Afrikaner, 
with its better representation in the reference population, 
had more animals with low MAF in the imputed geno-
types, relative to Brahman and Brangus. Thus, with bet-
ter representation of each breed, and especially Brangus, 
improved accuracies might be achieved.

Coefficients of determination from the simple linear 
regression of concordance rate on MAF (R2 = 0.0015 to 
0.1287) with the multi-breed reference population were 
similar to those that had been obtained with the breed-
specific reference populations when using BEAGLE 
(Fig. 8a). Using FImpute, and the multi-breed reference 
population, the relationship between MAF and concord-
ance rate was reduced (R2 = 0.1463 to 0.7404) compared 
to the results obtained with breed-specific reference panels 
(Fig. 8b); thus, signifying the value of exploiting both LD 
and family information when using a multi-breed reference 

population. BEAGLE exploits LD between markers and 
ignores IBD derived from pedigree data (Browning and 
Browning, 2007), whereas FImpute uses a combination of 
pedigree and LD information. In FImpute, haplotype simi-
larities based on IBD between individuals in reference and 
study populations are identified, thereby identifying rare 
variants (Sargolzaei et al., 2014). Luan et al. (2012) found 
both IBD and IBS to be important for accurate imputation 
because they both contributed information to the relation-
ship among animals. It was shown that within breed, IBD 
was reliable and improved GS accuracies and this was in 
agreement with within breed imputation displayed in the 
current study.

The effects of LD on accuracy of imputation remain neg-
ligible with the multi-breed reference population irrespec-
tive of the method used (R2 = 0.0004 to 0.0804) (Fig. 9a, b). 
These results confirm that of Hozé et al. (2013) wherein it 
was shown that LD had no major influence on the accuracy 
of imputed genotypes relative to the reference population 
size and the relationship between the reference and target 
population.

Fig. 8  Linear regression dis-
playing the relationship between 
minor allele frequency and con-
cordance rate for multi-breed 
reference population imputation 
strategy using a. BEAGLE b. 
FImpute
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Accuracy of imputation is influenced by the size and 
composition of the reference population and is crucial to the 
accuracy of downstream GS and GWAS (e.g., Huang et al., 
2012; Ullah et al., 2019). In cattle breeding programs, ref-
erence populations for genotype imputation vary, compris-
ing of only individuals that are closely related to the indi-
viduals in the study population (e.g., Huang et al., 2012), 
to those composed of individuals from a variety of breeds 
with diverse genetic relationships to the study group (e.g., 
Rowan et al., 2019). For more genetically diverse breeds, the 
accuracy of imputation may benefit from utilizing a large and 
more genetically diverse reference population that includes 
multiple breeds (Brøndum et al., 2012; Rowan et al., 2019). 
However, Berry et al. (2014) stated that it is advantageous for 
accurate imputation to include only animals from the breed 
being imputed in the reference population. Thus, when mak-
ing use of population-wide LD imputation, the accuracy can 
be positively affected by the presence of close relatives in the 
reference population and choice of the imputation program 
used to capture LD between markers. Likewise, when a large 

reference population is not available, Korkuć et al. (2019) 
recommended using a smaller same-breed reference popula-
tion without including different related breeds.

Conclusion

Concordance rates were less affected by the method 
used for imputation, while MAF affected the accuracy of 
imputation more with FImpute compared to BEAGLE. 
Across all three breeds, the accuracy of imputation was 
higher using within-breed strategies and is potentially 
the most feasible strategy among the currently tested 
strategies. Based on the findings from this study, it is 
recommended that the South African breeding industry 
vigorously make use of within breed imputation to initiate 
the utility of genomic tools, while working towards 
the goal of increasing the number of genotypes for the 
different breeds.

Fig. 9  Linear regression dis-
playing the relationship between 
linkage disequilibrium and con-
cordance rate for multi-breed 
reference population using a. 
BEAGLE b. FImpute
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